Plant Phenomics | Panicle-3D:水稻穗點云精確語義分割的高效表型工具
稻穗表型參數自動化測量方法對品種具有重要意義。作物點云的自動分割和分類有助于有助于精確獲取水稻品種的稻穗長度體積、彎曲度、劍葉夾角、著粒分布特性等重要參數。傳統的掃描點云聚類方法可以實現對空間位置相對獨立的植物器官點云的分割,但精度不高,難以直接應用于稻穗表型分析;基于通用點云語義識別的人工智能模型應用于穗狀點云分割時,面臨大規模樣本困難、點云分布不均、莖穗互相遮擋、點云排列無序等挑戰,也無法實現稻穗點云的精細分析。
近日,Plant Phenomics在線發表了上海交通大學機械與動力工程學院機電與物流裝備研究所貢亮課題組題為Panicle-3D: Efficient phenotyping tool for precise semantic segmentation of rice panicle point cloud 的研究論文,提出了穗型分析的自動化裝置設計方法和穗型點云語義分析的專用網絡。
針對穗型研究缺乏自動化儀器問題,該研究首先設計了基于主動結構光的桌面級三維點云掃描裝置,對水稻點云數據進行采集,經過數據預處理和標注,得到包含200個水稻點云的數據集。同時,除了對稻穗進行原位掃描外,該裝置也支持對稻穗等作物器官進行破壞性分解研究,從而獲得稻穗的更為細節的表型參數,例如莖的直徑、莖的長度、穗的長度、高度和寬度,主穗和小穗的幾何特征,以及幼苗在穗中的分布等。
針對傳統機器學習方法難以分割的植物點云,引入3D點云卷積神經網絡架構,并基于該架構設計了多尺度點云特征分析算法Panicle-3D,實現了快速有效的點云分割。稻穗點云分割準確率達到93.4%,IoU達到86.1%,均優于經典點云處理模型PointNet。
與傳統的表型參數測量方法相比,該研究提出的方法有助于實現作物表型參數的自動化,為功能遺傳分析和育種提供支持。
Figure 1The structure of the point cloud acquisition platform
Figure 6Structure of Panicle-3D
Figure 8The segmentation results
本研究得到了倫敦皇家自然知識促進學會(CHL\R1\180496)和中國國家自然科學基金(No. 51775333)資助,特此感謝。
作者介紹
貢亮,上海交通大學機械與動力工程學院副教授,博士生導師,上海交通大學“晨星計劃”青年學者,現任上海市農業工程學會設施專委會副主任。長期從事農業機器人研究,在生物特征圖像識別、嵌入式智能計算、農業機器人設計與控制等領域持有國家發明專利近50項,發表SCI論文60余篇,出版“十三五”國家重點規劃教材1部。近5年主持國家支撐計劃、“十三五”、“十四五”國家重點研發計劃、國家自然科學基金、IEEE前沿科技研發、英特爾亞太戰略合作項目10余項。任Plant Phenomics期刊副主編、多個國際期刊編委。
論文鏈接
https://doi.org/10.34133/2021/9838929
——推薦閱讀——
Global Wheat Head Detection 2021: An Improved Dataset for Benchmarking Wheat Head Detection Methods
https://doi.org/10.34133/2021/9846158
Plant Phenomics | GWHD_2021:改進后的全球麥穗檢測數據集
Complementary Phenotyping of Maize Root System Architecture by Root Pulling Force and X-Ray Imaging
https://doi.org/10.34133/2021/9859254
Plant Phenomics | 基于根提拉力和X射線成像的玉米根系結構表型研究
加入作者交流群
掃碼添加小編微信,拉您進入《植物表型組學》作者交流群,群內不定期開展作者分享會、專刊發布會等高質量活動。
添加小編微信,備注姓名+單位+PP,加入作者交流群
About Plant Phenomics
《植物表型組學》(Plant Phenomics)是由南京農業大學和美國科學促進會(AAAS)合作創辦的英文學術期刊,于2019年1月正式上線發行。采用開放獲取形式,刊載植物表型組學交叉學科熱點領域具有突破性科研進展的原創性研究論文、綜述、數據集和觀點。具體范圍涵蓋高通量表型分析的最新技術,基于圖像分析和機器學習的表型分析研究,提取表型信息的新算法,作物栽培、植物育種和農業實踐中的表型組學新應用,與植物表型相結合的分子生物學、植物生理學、統計學、作物模型和其他組學研究,表型組學相關的植物生物學等。期刊已被DOAJ、Scopus、PMC、EI和SCIE等數據庫收錄。2021年中科院期刊分區表影響因子5.706,位于農藝學、植物科學兩個小類一區,遙感小類二區,生物大類一區(Top期刊)。2020年入選中國科技期刊卓越行動計劃高起點新刊項目。
說明:本文由《植物表型組學》編輯部負責組稿。
中文內容僅供參考,一切內容以英文原版為準。
編輯:趙瑜涵(實習)
審核:孔敏、王平