久热久草在线_一一高清视频在线观看_在线观看91av_久草免费在线观看视频_国产精品午夜无码A体验区_国产一级高清

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 用無人機多光譜圖像估算水稻葉片氮濃度的背景效應研究

用無人機多光譜圖像估算水稻葉片氮濃度的背景效應研究

瀏覽次數:1245 發布日期:2022-5-10  來源:本站 僅供參考,謝絕轉載,否則責任自負

熱點

背景效應影響無人機圖像估算葉片氮濃度(LNC)。

背景去除削弱了水稻LNC估計中對觀測時間的敏感性。

來自陽光像素的AACIre(AACIre sunlit)優于來自所有像素的AACIre。

AACIre sunlit在綠色像素方面的精度高于SAVI和CIre。 


摘要

背景效應是利用無人機(UAV)多光譜圖像監測作物葉片氮濃度(LNC)的一個關鍵限制。為了提高LNC的估計,已經開發了一些背景去除方法,但在研究中沒有對它們的性能進行比較,也不清楚它們是否對無人機圖像的觀測時間敏感。本研究評估了三種背景去除方法,即土壤調整植被指數法(SAVI)、綠色像素植被指數法(GPVI)和豐度調整植被指數法(AAVI),用于從基于無人機的多光譜圖像中估算水稻在各個生長階段和一天中不同觀測時間的LNC。選擇紅邊葉綠素指數(CIre)作為后兩種方法的共同基礎。特別是,AAVI方法經過了改進,增加了端部構件的數量,實現了端部構件的自動提取,并進一步評估了將光照部位與樹冠陰影部位分離的效果。
 

我們的研究結果表明,非正午觀測時間的植被指數(VIs)與LNC的關系在個體和整個生長階段都優于正午觀測時間的植被指數(VIs)。與SAVI和CIre green相比,AACIre for all pixels(AACIre all)對觀察時間的靈敏度最弱,并且在單階段(接合:r2=0.70,啟動:r2=0.76,標題:r2=0.70)和跨階段(r2=0.66)模型中產生了最佳關系。在三類像素衍生的AAVIs中,AACIre sunlit(R2=0.90,RMSE=0.17%,Bias=0.03%)在LNC估計精度方面顯著優于AACIre all(R2=0.85,RMSE=0.23%,Bias=0.08%)和AACIre shaded(R2=0.38,RMSE=0.49%,Bias=0.40%)。這項研究表明,改進的AAVI方法在減少背景效應、更準確地監測生長參數方面具有重大價值,并可推廣到其他作物和地區,以改進精確的作物管理和基于田間的高通量表型分析。
 

An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times 


Highlights

Background effect impacted leaf N concentration (LNC) estimation with UAV imagery.

Background removal weaked sensitivity to observation time in rice LNC estimation.

AACIre from sunlit pixels (AACIre-sunlit) outperformed AACIre from all pixels.

AACIre-sunlit yielded higher accuracies than SAVI and the CIre from green pixels.


Abstract

Background effect is a crucial limitation for the monitoring of leaf nitrogen concentration (LNC) in crops with unmanned aerial vehicle (UAV) multispectral imagery. Some background removal approaches have been developed for improve the estimation of LNC, but their performances are not compared in one study and it is unclear whether they are sensitive to the observation time of UAV imagery. This study evaluated three background removal approaches, i.e., the soil-adjusted vegetation index (SAVI) approach, the green pixel vegetation index approach (GPVI) and abundance adjusted vegetation index (AAVI), for estimating rice LNC from UAV-based multispectral imagery at individual and across growth stages as well as different observation times of the day. The red edge chlorophyll index (CIre) was chosen as the common basis for the last two approaches. In particular, the AAVI approach was refined with a higher number of endmembers and automated endmember extraction, and further evaluated for assessing the effect of separating sunlit components from shaded components of the canopy.
 

Our results demonstrated that the vegetation indices (VIs) for off-noon observation times showed better relationships with LNC than those for noon at individual and across growth stages. Compared to both SAVI and CIre-green, the AACIre for all pixels (AACIre-all) exhibited the weakest sensitivity to observation time and yielded the best relationships for single-stage (jointing: r2=0.70, booting: r2=0.76, heading: r2=0.70) and across-stage (r2=0.66) models. Among the AAVIs derived from three categories of pixels, the AACIre-sunlit (R2 =0.90, RMSE=0.17%, Bias=0.03%) outperformed AACIre-all (R2 =0.85, RMSE=0.23%, Bias=0.08%) and then AACIre-shaded (R2 =0.38, RMSE=0.49%, Bias=0.40%) remarkably for the estimation accuracy of LNC. This study suggests that the refined AAVI approach has great value in reducing the background effect for more accurate monitoring of growth parameters and could be extended to other crops and regions for improved precision crop management and field-based high-throughput phenotyping.
 

發布者:北京博普特科技有限公司
聯系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 一级少妇淫片免费播放观看 | 成人久久久久爱 | 在线观看精品一区二区三区 | 色就色 综合偷拍区91网 | 亚洲最大的av网站 | h片在线观看一区二区三区 亚洲一区 在线播放 | 国产精品白浆无码流出免费看 | 在线免费国产 | 成人国产一区二区三区 | 成片免费观看视频999 | 变态拳头交视频一区二区 | 91精品一区二区三区久久久久 | 日韩欧美成人一区二区三区 | 成人无码精品免费视频在线 | 国产亚洲精品久久久久秋 | 国产日韩欧美综合色视频在线 | 国内午夜无码不卡在线观看 | 精品产国自在拍 | 国产精品嫩草影院久久久 | 国产激情高中生呻吟视频 | 国产精品久久久久久二区 | 久久公开免费视频 | 黑人又大又粗弄得我好爽 | 日本a级黄绝片a一级啪啪 | 亚洲视频免费在线看 | 黑人一区 | 欧美精品日日鲁夜夜添 | 手机看片日韩高清国产欧美 | 99久久www免费人成精品 | 97色伦97色伦国产欧美 | 欧美69视频在线观看 | 就去色婷婷 | 国产啪爱视频精品免视 | 人妖一级片 | 国产在线一区二区三区 | 中文字幕中文字字幕码一二区 | xnxx在线观看 | 国产精品久久久久久久白浊 | 国产99久久久国产精品 | 一区国产在线观看 | 日韩国产黄色 |